1. Description
 The V2181 is a state-of-the-art voltage-controlled amplifier (VCA) offering high-performance current-in/current-out technology including two opposing-polarity, voltage-sensitive control ports. The V2181 VCA combines many advantages such as ultra-low noise, ultra-low distortion, low offset and high gain-bandwidth. It requires few external support circuitry and is housed in a space-efficient 8-pin single-in-line (SIP) package.

2. Features
 - Wide dynamic range: >115 dB
 - Wide gain range: >130 dB
 - Logarithmic gain control with dual gain control (pos/neg)
 - Low distortion: (0.008 % @ 0 dB gain, 0.035 %@ 15 dB gain)
 - Wide gain-bandwidth: 6 MHz
 - Low harmonic distortion: 0.01 % (typ)
 - Package outline: SIP-8 (V2181)
 - ROHS compliant (PB-free)

Information furnished by COOLAUDIO is believed to be accurate and reliable. However, no responsibility is assumed by COOLAUDIO for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of COOLAUDIO.

Rev. 1.0
3、Applications
 • Faders
 • Expanders
 • Compressors
 • Equalizers
 • Oscillators
 • Filters
 • Automation Systems

4、Pin Configuration
5、Function Description

The V2181 VCA is designed for high performance in audio applications which requires exponential gain control, low distortion, wide dynamic range and low DC “control feedthrough” modulation. Gain is controlled by converting an input current signal to a bipolar logged voltage, adding a DC control voltage and reconverting the summed voltage back to a current through a bipolar antilog circuit.

The simplified internal circuit diagram of the IC is shown in figure 1. The AC input signal current flows in the input pin 1, which is maintained at a virtual ground by an internal opamp.

![Figure 1. Simplified internal circuit diagram](image)
Figure 2. Gain versus control voltage at 25°C

Figure 3. Typical THD versus symmetry voltage
Figure 4. Using Both Control Ports Pin 2 and Pin4

Figure 5. DC offset vs. gain, after symmetry adjustment
6、Stick Packaging
7、Soldering
MAX. Temperature (Surface) : Below 260°C
MAX. Temperature Duration : \(\leq 10s \)
Above 220°C Duration : \(\leq 30s \)
Between 150°C and 180°C : 60-120s
Duration Soldering Times : 2 Times

![Soldering Diagram]

8、Package Dimensions
MAX. Temperature (Surface) : Below 260°C
MAX. Temperature Duration : <10s
Pre-heat Temperature : 120°C
Soldering Times : 1 Time

![Package Dimensions Diagram]
<table>
<thead>
<tr>
<th>Name of the Part</th>
<th>Material Weight (mg/unit)</th>
<th>Material Name</th>
<th>Material Analysis (element)</th>
<th>Material Analysis (weight%)</th>
<th>Prohibited Content in total (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leadframe</td>
<td>122</td>
<td>Cu-Alloy</td>
<td>Cu</td>
<td>>97%</td>
<td><47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fe</td>
<td>2.1-2.6%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zn</td>
<td>0.05-0.2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pb</td>
<td><0.03%</td>
<td></td>
</tr>
<tr>
<td>Plastic</td>
<td>633</td>
<td>Epoxy Resin</td>
<td>SiO2</td>
<td>70-90%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Epoxy</td>
<td>8-12%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sb2O3</td>
<td>1-3%</td>
<td></td>
</tr>
<tr>
<td>Chip</td>
<td>7</td>
<td>Doped Silicon</td>
<td>Si</td>
<td>99.6%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Al</td>
<td>0.4%</td>
<td></td>
</tr>
<tr>
<td>Die attach</td>
<td>0.5</td>
<td>Glue</td>
<td>Ag Epoxy Resin</td>
<td>82% 18%</td>
<td></td>
</tr>
<tr>
<td>material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wires</td>
<td>0.5</td>
<td>Gold</td>
<td>Au</td>
<td>99.99%</td>
<td></td>
</tr>
<tr>
<td>Leads finishing</td>
<td>12.5</td>
<td>Sn Solder Ball</td>
<td>Sn</td>
<td>>99.9%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pb</td>
<td><0.02%</td>
<td><3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cd</td>
<td><0.0005%</td>
<td><0.1</td>
</tr>
</tbody>
</table>